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Abstract
A stability and efficiency improved class of generalized Runge–Kutta methods
of order 4 are developed for the numerical solution of stiff system kinetics
equations for linear and/or nonlinear coupled differential equations. The
determination of the coefficients required by the method is precisely obtained
from the so-called equations of condition which in turn are derived by an
approach based on Butcher series. Since the equations of condition are
fewer in number, free parameters can be chosen for optimizing any desired
feature of the process. A further related coefficient set with different values
of these parameters and the region of absolute stability of the method have
been introduced. In addition, the A(α) stability properties of the method are
investigated. Implementing the method in a personal computer estimated the
accuracy and speed of calculations and verified the good performances of
the proposed new schemes for several sample problems of the stiff system
point kinetics equations with reactivity feedback.

PACS numbers: 02.30.Hq, 02.30.−x, 02.60.Lj

1. Introduction

Stiff differential equations frequently arise in physical kinetics equations due to the existence of
greatly differing time constants, which almost refer to the rate of decay or change. Initial value
problems with strongly decreasing and increasing solution components with the independent
variable are called stiff problems. The system of the point kinetics equations possesses a stiff
character which include equations that describe the neutron level, reactivity, an arbitrary
number of delayed neutron groups and any thermodynamic variables that enter into the
reactivity equation. Usual integration routines suffer from one or more disadvantages, because
of the different growth of the solution components.
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In recent decades, there has been a considerable amount of research on methods for
numerical integration of the stiff system of ODEs, usually looking for better stability
properties; such methods are nearly implicit in character. In 1972, Butcher [1] published
a valuable article in which he analysed general Runge–Kutta methods on the basis of the
algebra of rooted trees (ART). He showed that the Runge–Kutta methods form a group
(which is called after that Butcher group) and developed explicit expressions for the inverse
of a method or the product of two methods. He also gave an explicit perturbative solution
of nonlinear differential equations, written as a series indexed by rooted trees (now called
B-series). Important developments were then made by Hairer and Wanner in 1974 [2].
Since then, B-series have been used in the analysis of Runge–Kutta methods.

Implicit Runge–Kutta formulae [3–6] have been widely used because of their excellent
stability properties (such as A-stability, A(α) stability, L-stability and B-stability), but the need
for solving nonlinear algebraic equations at each step makes these formulae generally too
costly when considering some huge systems of ODEs.

Many other attempts have been made in order to reduce the computation cost per
step by considering linearly implicit methods, in this way eliminating the need for solving
nonlinear systems which usually are solved by Newton-type iteration. Such formulae have
the computational advantage that it is necessary to solve only linear system of algebraic
equation at each step. An example of such a scheme is the generalized Runge–Kutta
scheme (GRK) proceeded from Rosenbrock [7], i.e. a Runge–Kutta scheme where the
Jacobian matrix is introduced directly into the coefficients of the Runge–Kutta formula.
This scheme proposed a special class of the Jacobian matrix at each Runge–Kutta stage.
Among the many different GRK-like methods of this type we have the modified Rosenbrock
methods (ROW) [8–11]. However, these formulae that are widely used require the exact
Jacobian at every step; therefore, the computation is costly and from a practical point
of view, such formulae are unattractive. For this reason, extensions of Rosenbrock
methods are fixed for some number of steps so that the computation is reduced [12–14].
Moreover, Rosenbrock-type methods in which the exact Jacobian is no longer needed
have been considered. The generalized Runge–Kutta methods [9, 12, 15] fall into this
class. For an excellent survey of some of these methods the reader may be referred to
[16].

The point-kinetics equations are a system of differential equations for the neutron
density and for the delayed neutron precursor concentrations (delayed neutron precursors
are radioactive isotopes which are formed in the fission process and decay through neutron
emission). The neutron density and delayed neutron precursor concentrations determine
the time-dependent behaviour of the power level of a nuclear reactor and are influenced,
for example, by controlling the rod position. Computational solutions of the point-kinetics
equations provide insight into the dynamics of nuclear reactor operation and are useful, for
example, in understanding the power fluctuations experienced during start-up or shut-down
when the control rods are adjusted. Recently, a large number of kinetics studies have been
reported [17–24], which modelled the time-dependent behaviour of a nuclear reactor using
the point-kinetics equations.

In this paper, a generalization of the straightforward Runge–Kutta method of order 4
with different A(α) stabilities is developed and applied to integrate stiff ordinary differential
equations. The equations of condition for this class of semi-implicit methods are resolved
inside a wide range of interval taking into consideration that the free parameters (ε and γ ) are
specified at different points over a wide range of stability intervals using the idea of inner and
outer iterations. For a specified value of ε, the inner iteration is carried out on γ for some
stated interval whenever A(α) stability is studied. Repeating this process at different values
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of ε produces the outer iteration. Furthermore, different stabilities are obtained where the
equations of condition are resolved and applied to the coupled linear and/or nonlinear point
kinetics equations with fuel feedback. The percentage error of the neutron density is estimated
and reported.

This paper is organized as follows. In section 2, the generalized Runge–Kutta (GRK)
method is introduced and modified where the equations of condition are resolved. For further
generalization of the method, new sets of free parameters are introduced and implemented
by embedding inner and outer iterations. The stability of the modified Rosenbrock (ROW)
methods is developed. In section 3, the GRK method with stability group constants is applied
to the linear and/or nonlinear coupled system of the point kinetics equations. Finally in
section 4, to verify the validity and efficiency of the developed method, comparisons are
carried out on the numerical experiments between different analogous methods for step, ramp,
oscillatory reactivity as well as the case in which the feedback reactivity is a function of neutron
density.

2. Generalized Runge–Kutta method (GRK)

A generalized Runge–Kutta (GRK) method for the numerical solution of the autonomous
initial value problem

y ′(x) = f [y(x)], y(x0) = y0, (1)

where y, y0 and f in general are vectors in n-dimensional real space, is sought by integrating
from x0 to (x0 + h), in the form

yi+1 = yi +
∫ x0+h

x0

f [y(x)] dx

or, in the equivalent form

yi+1 = yi +
s∑

j=1

CjKj , (2)

where the vector Kj is determined by solving the s linear equations [7]

[I − γ hf ′(y0)]Ki = hf


yi +

i−1∑
j=1

αijKj


 + hf ′(y0)

i−1∑
j=1

γijKj i = 1, . . . , s. (3)

Method (3) is called the modified Rosenbrock method, short ROW method [7]; this method
coincides with the corresponding Runge–Kutta method when γij = 0. The method used a
variable step size, which is estimated by computing the solution yi+1 given by equation (2), and
a lower order estimate ȳi+1 with different coefficients C̄i(

�

s ≺ s) and the same Ki. Analogous
to the approach followed in the Runge–Kutta Fehlberg methods for nonstiff systems, the
third-order method is combined with a fourth-order method using the same time step size h
to obtain an estimate of the truncation error, which in turn utilized to estimate the next step
control. To compute the vector Ki (i = 1, . . . , s) given by equation (3), a linear system of order
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n for four right-hand sides must be solved:

K1 = hBf (y0)

K2 +

(
γ21

γ

)
K1 = B

[
hf (y0 + α21K1) +

(
γ21

γ

)
K1

]

K3 +

(
1

γ

) 2∑
�=1

γ3�K� = B

[
hf

(
y0 +

2∑
�=1

α3�K�

)
+

(
1

γ

) 2∑
�=1

γ3�K�

]

K4 +

(
1

γ

) 3∑
�=1

γ4�K� = B

[
hf

(
y0 +

3∑
�=1

α4�K�

)
+

(
1

γ

) 3∑
�=1

γ4�K�

]




B = [I − hγf ′(y0)]
−1,

(4)

where yi is the approximate solution at xi, h denotes the step size, f ′(y0) is the Jacobian, I is
the (n × n) identity matrix and s is the number of stages. The coefficients γ,Ci, αij and γij

are real numbers and fixed constants independent of the problem.
In 1979, Kaps and Rentrop [9] suggested two different sets of coefficients, which have

slightly different properties. The number of stages s is equal to the order of the method.
The Jacobian f ′(y0) is computed by difference approximation and should be replaced by an
analytic version for very sensitive problems.

On the same line, two such cases for the stages s are considered here with s = 3 and
s = 4 (i.e. third-order and fourth-order methods). Fourth- and third-order approximations
denoted by yi+1 and ȳi+1, respectively are introduced according to the following formulae.
The ROW method of order 4 given by

yi+1 = yi +
s∑

i=1

CiKi for (s = 4) (5a)

and the ROW method of order 3 given by

ȳi+1 = ȳi +
s∑

i=1

C̄iKi for (s = 3) (5b)

are combined, where the coefficients γ, αij and γij (i = 1, . . . , s: j = 1, . . . , i−1). Therefore,
Ki is the same for both formulae (5a) and (5b). The results of the fourth-order method are
taken as initial guess for the next step. These two methods coincide with the corresponding
conventional Runge–Kutta method when γij equal zero.

2.1. Equations of condition

The determination of the coefficients required by the GRK method is fairly involved [9]. It
can be said that they are obtained from the so-called equations of condition which in turn are
derived by an approach similar to that followed in the usual Runge–Kutta method, except that
the Butcher series [2] are used instead of the Taylor series. Since the equations of condition
are fewer in number than the unknown, several of these can be chosen as free parameters in
order to determine a complete set of constants. The previous calculations utilized only one
free parameter, while in the present study, new set of parameters (ε and γ ) are introduced for
generalizing the method over a large interval. Each particular choice of these parameters leads
to a method whose region of absolute stability can be analytically delimited. Furthermore,
the validity of these parameters enables solving the equations of condition for third and fourth
orders of stability intervals.

The determination of the coefficients γ,Ci, αij and γij required by the method is obtained
by solving equations of condition which are derived in [10] and by applying the theory of



Stability of generalized Runge–Kutta methods for stiff kinetics coupled differential equations 1863

Butcher series, the equations up to order 5 for yi+1 are calculated and listed in the following
table:

Order 1 Order 5 (for truncation error investigations)∑
Ci = 1 (6)

∑
Ciα

4
i = 1

5 (14)

Order 2
∑

Ciα
2
i αikβk = 1

10 − 1
4 γ = p10(γ ) (15)∑

Ciβi = 1
2 − γ = p2(γ ) (7)

∑
Ciαikβkαilβl = 1

20 − 1
4 γ + 1

3 γ 2 = p11(γ ) (16)

Order 3
∑

Ciαiαikα
2
k = 1

15 (17)∑
Ciα

2
i = 1

3 (8)
∑

Ciαiαikβklβl = 1
30 − 1

4 γ + 1
3 γ 2 = p13(γ ) (18)∑

Ciβij βj = 1
6 − γ + γ 2 = p4(γ ) (9)

∑
Ciβikα

3
k = 1

20 − 1
4 γ = p14(γ ) (19)

Order 4
∑

Ciβikαkαklβl = 1
40 − 5

24 γ + 1
3 γ 2 = p15(γ ) (20)∑

Ciα
3
i = 1

4 (10)
∑

Ciβikβklα
2
l = 1

60 − 1
6 γ + 1

3 γ 2 = p16(γ ) (21)∑
Ciαiαikβk = 1

8 − 1
3 γ = p6(γ ) (11)

∑
Ciβikβklβlmβm = 1

120 − 1
6 γ + γ 2 − 2γ 3 + γ 4∑

Ciβikα
2
k = 1

12 − 1
3 γ = p7(γ ) (12) = p17(γ ) (22)∑

Ciβikβklβl = 1
24 − 1

2 γ + 3
2 γ 2 − γ 3 = p8(γ ) (13)

where the summation indices i, j, k, l, m = 1, . . . , s, and the following abbreviations are used:

αi = �αij , βij = αij + γij ,

βi = �βij , αij = γij = 0, for i � j

}
. (23)

The equations of condition for a third order (i.e. equation (5b)) for ȳi+1 are obtained by
replacing Ci by C̄i and s by s̄ in the above equations. In order to derive the system of equations
of order 4, inserting relations (23) into equations of condition ((6)–(22)) with s = 3 and
s = 4. The system of equations are obtained and listed in the following table.

s = 3 s = 4
Order 1
C̄1 + C̄2 + C̄3 = 1 (24) C1 + C2 + C3 + C4 = 1 (35)
Order 2
C̄2β21 + C̄3(β31 + β32) = p2(γ ) (25) C2β21 + C3(β31 + β32) + C4(β41 + β42 + β43) = p2(γ ) (36)
Order 3
C̄2α

2
21 + C̄3(α31 + α32)

2 = 1
3 (26) C2α

2
21 + C3(α31 + α32)

2 + C4(α41 + α42 + α43)
2 = 1

3 (37)
C̄3β32β21 = p4(γ ) (27) C3β32β21 + C4β42β21 + C4β43(β31 + β32) = p4(γ ) (38)
Order 4
C̄2α

3
21 + C̄3(α31 + α32)

3 = 1
4 (28) C2α

3
21 + C3(α31 + α32)

3 + C4(α41 + α42 + α43)
3 = 1

4 (39)
C̄3(α31 + α32)β21α32 = p6(γ ) (29) C3α32β21(α31 + α32) + C4α42β21(α41 + α42 + α43)

C̄3β32α
2
21 = p7(γ ) (30) + C4α43(β31 + β32)(α41 + α42 + α43) = p6(γ ) (40)

C3β32α
2
21 + C4β42α

2
21 + C4β43(α31 + α32)

2 = p7(γ ) (41)
C4β43β32β21 = p8(γ ) (42)

Order 5
C̄2α

4
21 + C̄3(α31 + α32)

4 = 1
5 (31) C2α

4
21 + C3(α31 + α32)

4 + C4(α41 + α42 + α43)
4 = 1

5 (43)
C3α32β21(α31 + α32)

2

+ C4α43(β31 + β32)(α41 + α42 + α43)
2 = p10(γ ) (44)

C̄3(α31 + α32)
2α32β21 = p10(γ ) (32) C3α

2
32β

2
21 + C4α

2
42β

2
21 + C4α42β21(β31 + β32)

+ C4α
2
43(β31 + β32)

2 = p11(γ ) (45)
C3α32α

2
21(α31 + α32) + C4α42α

2
21(α41 + α42 + α43)

+ C4α43(α31 + α32)
2(α41 + α42 + α43) = 1

15 (46)
C̄3α

2
32β

2
21 = p11(γ ) (33) C4α43β21β32(α41 + α42 + α43) = p13(γ ) (47)

C3α
3
21β32 + C4β42α

3
21 + C4β43(α31 + α32)

3 = p14(γ ) (48)
C̄3α32α

2
21(α31 + α32) = 1

15 (34) C4α32β21β43(α31 + α32) = p15(γ ) (49)
C4β43β32α

2
21 = p16(γ ) (50)
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Applying condition (23) in the case of s = 3 equations (13), (18)–(22) are disappeared (βij = 0,
for i � j ), while in the case of s = 4 only equation (22) is disappeared, for the same reason,
from the above system of conditions. The system of conditions (33) and (34) for s = 3 and
the system of conditions (35)–(50) for s = 4 for the unknown constants can be solved, where
equations (35), (37) and (39) are combined using relations (23) and converted to the matrix
form as 


1 1 1

0 α2
2 α2

3

0 α3
2 α3

3





 C1

C2

C3 + C4


 =




1
1
3
1
4


 ,

where

α2 = α21, α3 = α31 + α32 and α3 = α4.

Solving this system of equations for the constants Ci (i = 1, . . . , 4), we get

C1 = 1 −
(
α3

3 − α3
2

)
3(α2α3)2(α3 − α2)

+
α3 + α2

4(α2α3)2

C2 = 4α3 − 3

12α2
2(α3 − α2)

C3 + C4 = −4α2 + 3

12α2
3(α3 − α2)




. (51)

Recalling equation (42)

β32β2 = p8

C4β43
= u, where β2 = β21. (52)

The constants C̄1, C̄2, C̄3 can be determined from equations (24), (26) and (27) which could
be represented in the following matrix form:

1 1 1
0 α2

2 α2
3

0 0 u





C̄1

C̄2

C̄3


 =


 1

1
3

p4(γ )


 .

Through solving this system for the constants (i = 1, 2, 3), we get

C̄1 = 1 − 1

3α2
2

+
α2

3 − α2
2

α2
2u

p4(γ )

C̄2 = 1

3α2
2

− α2
3

α2
2u

p4(γ )

C̄3 = p4(γ )

u
.

(53)

Using equation (41) gives

C3β32 + C4β42 = (
p7(γ ) − C4β43α

2
3

)/
α2

2 = v. (54)

Similarly, equations (25), (38) and (54) can be rewritten in the following matrix form:(
v C4β43

C̄2 C̄3

) (
β2

β3

)
=

(
p4(γ )

p2(γ )

)
and by solving this system for the constants β i (i = 1, 2), we get

β2 = C̄3

�
p4 − C4β43

�
p2(γ ), (55a)
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β3 = − C̄2

�
p4(γ ) − v

�
p2(γ ), (55b)

where

� = vC̄3 − C̄2C4β43. (55c)

Also, by converting equations (40) and (41) to the matrix form(
β2 0
C3 C4

) (
β32

β42

)
=

(
u

v

)
and then solving this system for the constants β32 and β42, we get

β32 = u

β2
(56a)

β42 = −uC3

C4β2
+

v

C4
. (56b)

By inserting α43 = 0 and α42 = α32 into equations (36) and (40), the following equations are
obtained:

β4 = p2(γ ) − C2β2 − C3β3

C4
(57a)

α32 = p6(γ )

(C3 + C4)α3β2
. (57b)

The remaining free parameters, except γ , can be chosen so that several equations of condition
of order 5, e.g. equation (48), are satisfied. Accordingly, equations (37), (39), (41) and (48)
could be written in the matrix form as


α2

2 α2
3 α2

3 0

α3
2 α3

3 α3
3 0

0 β32α
2
2 β42α

2
2 β43α

2
3

0 β32α
3
2 β42α

3
2 β43α

3
3







C2

C3

C4

C4


 =




1
3
1
4

p7(γ )

p14(γ )


 ,

since

det




α2
2 α2

3 α2
3 0

α3
2 α3

3 α3
3 0

0 β32α
2
2 β42α

2
2 β43α

2
3

0 β32α
3
2 β42α

3
2 β43α

3
3


 = 0.

The last system is singular except when C3 = 0. On the other hand, C4 has no influence on the
truncation error; its value can also be chosen so that C3 = 0. Then equations (37), (39), (41)
and (48) can be rewritten in the matrix form where the values of C2, C4, C4 β42 and C4 β43 are
solutions of the linear system:(

α2
2 α2

3

α3
2 α3

3

) (
C2 C4β42

C4 C4β43

)
=

(
1
3 p7(γ )

1
4 p14(γ )

)
.

By solving this system for the constants β32, β42, C2 and C4, we get

C2 = 4α3 − 3

12α2
2(α3 − α2)

(58a)
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C4 = −4α3 + 3

12α2
3(α3 − α2)

(58b)

β42 = α3p7(γ ) − p14(γ )

C4α
2
2(α3 − α2)

(59a)

β43 = −α2p7(γ ) − p14(γ )

C4α
2
3(α3 − α2)

. (59b)

Depending on the free parameters α2 and α3 and by substituting C4β43, from equation (59b)
into equations (52), (54) and (55c), the values of the constants u, v and � were obtained.

Also, by using the value C4 β42 from equation (59a) and the value β32 from equation (56a)
the values of C3 and C4 can be separately obtained by substituting into equation (54):

C3 = v − C4β42

β32
.

By applying a back substitution the values of β2 and β3 are obtained from equations (55a)
and (55b). The value of α32 from equation (57b) gives α31 = α3 − α32. Similarly, from
equations (55b) and (56a) the value of β31 = β3 − β32 is obtained.

On the other hand, the value of β41 is obtained from equations (57a), (56b) and (59b)
where

β41 = β4 − β42 − β43.

Since βij = αij + γij the values of the following constants are easily obtained:

γ21 = β21 − α21, γ31 = β31 − α31, γ32 = β32 − α32, γ41 = β41 − α41

γ42 = β42 − α42, γ43 = β43 and α43 = 0.

The remaining free parameters, except γ , can be chosen so that again several equations of
condition of order 5, here equation (43), are satisfied.

For α2 �= α3 equations (35), (37), (39) and (43) possessed a solution, iff

det




1 1 1 1

0 α2
2 α2

3
1
3

0 α3
2 α3

3
1
4

0 α4
2 α4

3
1
5


 = 0.

Therefore,

α3 =
1
5 − 1

4α2

1
4 − 1

3α2
. (60)

The choice of α2 for most of the popular previous Rosenbrock methods has one degree of
freedom, i.e. one free parameter. In the present study, further free parameters can be determined
so that several orders of conditions of order 5 (e.g. equations (43) and (48)) are satisfied. The
remaining free parameters are chosen so that it has two degrees of freedom; to do this let
α2 = εγ , where ε and γ are constants that essentially determine the stability properties.

2.2. Inner and outer iterations

In the previous section, the free parameters α2, ε and γ are chosen under the condition

0 � αi � 1, i = 2, . . . , s. (61)
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This restriction is merely required for the evaluation of the right-hand side of the differential
equation in the integration interval, which represented a good restriction for the free parameters
α2 and α3, i.e.

0 � α2 � 1, 0 � α3 � 1. (62)

The present study on the free parameter γ shows that the value of γ ∈ [0.376, 0.399] gives
α3 < 0 which contradicted with the above restriction, while the value of γ ∈ [0.0, 0.374] ∪
[0.401, 1.5[ satisfied the restriction (61) and good results are obtained with different A(α)
stabilities.

To generalize and check the stability of the method at different points along the interval
[0, 1] different methods with the value of α2 are proposed.

Substituting equation (60) into equation (61) gives

0 �
1
5 − 1

4α2

1
4 − 1

3α2
� 1.

The last inequality determines the range of α2 so that

α2 ∈ [0, 0.6] ∪ [0.8, 1[ . (63)

The new parameter ε is introduced so that outer iteration is performed and then the stability and
truncation error are estimated; consequently outer iteration on γ is carried out. The parameter
α2 satisfying (63) in terms of the arbitrary constant ε resulted in

ε ∈ [
0, 0.6

γ

] ∪ [
0.8
γ

, 1
γ

[
. (64)

These new parameters ε, γ and α2 enable choosing and optimizing some features of the
process, e.g. stability, accuracy and efficiency.

2.3. Stability of the GRK (ROW) method

Stability properties of the ROW method of order �s have been studied [9] and we now quote
the obtained results which have been modified slightly in order that it can be applicable to a
wide range of interval. Some care must be taken when selecting a value of γ or ε which is at
the boundary of A(α) stability domain, since a small change in γ or ε can cause change in α

and less stability is obtained.
To compute the stability function R(z) for generalized Runge–Kutta schemes, consider

Dahlquist’s test equation

y ′ = λy, y(x0) = y0, λ ∈ C, y0 ∈ C, y : � → C

that is a set of independent equations each of the form z′
i = λizi . In a general nonlinear

equation, λi is identified with the eigenvalues of the Jacobian
∂y ′

∂y
. These values determine the

local behaviour of the system to a first approximation. The eigenvalues λi may of course be
complex.

Since f ′(y) = λ, it holds Ki = Ri(z)y0, z = λh, where Ri(z) are rational functions with
a denominator (1 − γ z)i and a degree of numerator �i; thus the numerical solution yh from
equation (2) is

yh = R(z)y0 (65)
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Table 1. A(α) stable and the coefficient set for different values of γ .

γ 0.2 0.21 0.22 0.23 0.24 0.25
α (s = 4) A(0) 89.32◦ 89.55◦ 89.39◦ 88.82◦ 86.53◦

Coefficients
γ 21 −0.259 999 99 −0.267 210 78 −0.271 247 06 −0.270 954 88 −0.264 685 69 −0.249 999 94
γ 31 −0.695 085 35 −0.246 340 63 0.061 981 38 0.291 297 44 0.473 747 79 0.630 000 59
γ 32 0.879 633 19 0.469 196 80 0.203 011 75 0.023 020 21 −0.099 298 78 −0.180 000 42
γ 41 0.703 998 21 0.574 987 59 0.440 136 64 0.297 613 14 0.143 565 55 −0.030 000 32
γ 42 −0.837 151 05 −0.715 094 21 −0.592 296 54 −0.470 087 89 −0.350 074 29 −0.233 999 79
γ 43 −0.057 142 85 −0.073 636 35 −0.090 967 71 −0.109 310 36 −0.128 888 88 −0.149 999 99
α21 0.400 000 00 0.419 999 99 0.440 000 00 0.460 000 00 0.479 999 99 0.500 000 00
α31 −0.542 273 82 −0.390 184 40 −0.241 187 75 −0.095 863 94 0.044 874 49 0.180 000 25
α32 1.399 416 69 1.253 820 78 1.112 155 56 0.975 174 25 0.844 014 35 0.719 999 73
β43 0.000 000 00 0.000 000 00 0.000 000 00 0.000 000 00 0.000 000 00 0.000 000 00
C1 0.164 352 18 0.183 539 39 0.200 644 25 0.216 031 55 0.229 998 71 0.242 798 45
C2 0.488 281 25 0.484 027 92 0.483 279 50 0.485 803 54 0.491 426 23 0.499 999 94
C3 0.000 000 00 0.000 000 00 −0.000 000 01 0.000 000 00 0.000 000 00 0.000 000 00
C4 0.347 366 90 0.332 432 66 0.316 075 92 0.298 165 14 0.278 575 15 0.257 201 67
C̄1 −1.008 284 45 −0.880 243 30 −0.786 632 42 −0.722 037 55 −0.685 127 38 −0.679 012 66
C̄2 1.987 390 16 1.877 331 02 1.808 860 78 1.777 327 06 1.783 247 23 1.833 333 73
C̄3 0.020 894 27 0.002 912 26 −0.022 228 37 −0.055 289 46 −0.098 119 92 −0.154 321 12

with the stability function

R(z) = 1 +
s∑

i=1

CiRi(z) = P(z)

Q(z)
.

For a rational approximation in equation (65) of order p, the stability function of a ROW
method with order p � s is given by

R(z) =
∑s

i=0 L
(s−i)
i

(
1
γ

)
(−γ z)i

(1 − γ z)s
,

where L
j

i (z) =
i∑

n=0

(−1)n
(

i + j

i − n

)
zn

n!




(66)

which stands for the generalized Laguerre polynomials [25]. R(z) was a rational
approximation to ez of order �s. By means of the stability function, some stability properties
could be characterized very conveniently.

One has stability at infinity, iff limz→∞ |R(z)| = ∣∣Ls

(
1
γ

)∣∣ � 1, where Ls = L(0)
s .

For γ > 0, a method (3) will be A-stable, iff |R(iy)| � 1 for y ∈ � and method (3)
will be A(α)-stable iff |R(z)| ≺ 1 ∀α ∈ (

0, π
2

)
, for z ∈ S(α), where S(α) = {z ∈ C,

Re(z) ≺ 0 ℘ 0 � |arg(−z)| ≺ α}. The method is A(0)-stable if there exists an α ∈ (
0, π

2

)
such that R(z) is A(α)-stable.

Table 1 shows the stability of third- and fourth-order methods within the interval (0.2,
0.25). For γ ∈ (0.2, 0.25), L3

(
1
γ

)
is small, and the stability region of the third- and fourth-order

methods is very large, table 1, see also figure 1 for Laguerre polynomials. A coefficient set
is also listed in table 1 for different values of γ . For choosing γ and/or ε besides stability
consideration the truncation error is taken into account in the inner and outer iterations which
is important for a valuable application.
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Figure 1. Laguerre polynomials.

3. Point reactor kinetics equations

The point reactor kinetics equations for the six group of delayed neutrons with feedback are
written as

dN(t)

dt
= ρ(N, t) − β

�
N(t) +

�∑
i=1

λiCi(t) (67)

dCi(t)

dt
= βi

λ
N(t) − λiCi(t), i = 1, 2, . . . , � (68)

dθ

dt
= 1.0, (69)

where the notations are usual [17–20], ρ(N, t) is in general a function of time and neutron
density or fuel temperature in feedback problems. The quantities N(t) and Ci(t) are, in
general, functions of time t, and λi , βi and � are assumed constants. The dependent variable
θ has been appended to the system of the point kinetics equations to convert the system to
autonomous one, so the system dimension of the method will be n × n matrix.

Let yk denote the kth component of a vector y; then the following correspondence is
established:

y1 = N(t), yk = Ck−1, k = 2, . . . , (� + 1), y(�+2) = θ.

With these, the vector f (y) from equations (67)–(69) will be

f (y) =




ρ(y1, y(�+2)) − β

�
y1 +

�∑
i=1

λiy
i+1

β1

�
y1 − λ1y

2

...
β�

�
y1 − λ�y

(�+1)

1







f1

f2

...

f (�+1)

f(�+2)
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and the Jacobian matrix will take the form

f ′(y) =




1
�

[ρ(y1, y
(�+2)

) − β] λ1 λ2 · · · λ�
y1

�

∂ρ

∂y(�+2)

β1

�
−λ1 0 · · · 0 0

β2

�
0 −λ2 · · · 0 0

...
. . .

β�

�
0 0 −λ� 0

0 0 0 · · · 0 0




.

By denoting the matrix [I − hγ f ′(y0)] by A, we get

A =




1 − p

�
[ρ(y1, y

(�+2)

) − β] −pλ1 −pλ2 · · · −pλ�
−p

�
y1 ∂ρ

∂y(�+2)

−pβ1

�
1 + pλ1 0 · · · 0 0

−pβ2

�
0 1 + pλ2 · · · 0 0

...
. . .

−pβ�

�
0 0 1 + pλ� 0

0 0 0 · · · 0 1




,

where we have made p = hγ .
The algorithm for calculating yi+1 given yi consists in determining Ki using equations (4),

evaluating yi+1 and ȳi+1 by means of equations (5a) and (5b) with y1 as the controlling variable.
The algorithm is coded in Visual FORTRAN for a personal computer as shown in figure 2.
To assess the method, a set of problems described in the published reference is used, this set
included step, ramp, zigzag ramp input reactivity and compensated reactivity feedback to the
six-delayed group equation.

4. Numerical examples and discussions

The new group of coefficients is coded and applied to the point kinetics equations for different
types of reactivities. The accuracy of the neutron flux is tested using the new set of coefficients
with two different types of iterations, inner and outer iterations, for the free parameters γ and/or
ε and α21. The first iteration on γ lies within the range of interval [0.20, 0.25], while the
second one is chosen so that α21 ∈ [0, 0.6] ∪ [0.8, 1]; exact results are obtained at the end of
the first interval when α21 is near 0.6. A new family of GRK groups (equations of condition)
are calculated and applied to the point kinetics equations. The best value of the new set of
coefficients is denoted by GRK4-H which corresponds to γ = 0.25 with the free parameter
α21 = 0.56. For γ = 0.25 the fourth-order method is A(86.53◦).

The generalized Runge–Kutta technique with the new set of coefficients is tested for
different types of problems and the results are compared against those obtained from the other
methods. The problems include step reactivity insertion, ramp input, oscillatory reactivity and
finally reactivity feedback for average one group and six groups of delayed neutrons. These
problems will be discussed in the following sections.

4.1. Step reactivity input

To check the accuracy of the algorithm, the code is applied to different points of step
reactivity. This case corresponds to a negative step insertion of reactivity of 0.007$
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Figure 2. Block diagrams for the method of calculation.

in a thermal reactor [23]. The obtained results are shown in table 2. Calculations
are made using the developed method of the new groups of coefficient sets GRK4-H.
Comparison is made using the reactor kinetic data described as � = 0.000 02 s, β tot = 0.007,
β i = (0.000 266, 0.001 491, 0.001 316, 0.002 849, 0.000 896 and 0.000 182) and λi = (0.0127,
0.0317, 0.115, 0.311, 1.40 and 3.87) s−1.

4.2. Ramp reactivity input

The reactivity case of a linear function of times (the so-called ramp input) is considered
as an example of time-dependent reactivity. Comparisons are made with a ramp variation
defined as ρ = ρ0 + µt for the different time-dependent reactivities. The values of the
parameters used in this example were � = 1.0 × 10−4 s, β tot = 0.0064, β i = (0.000 211,
0.001 402, 0.001 254, 0.002 528, 0.000 736 and 0.000 269) and λi = (0.0124, 0.0305, 0.115,
0.301, 1.138 and 3.01) s−1. The reference of N(t) values is that reported in [26] with the exact
value calculated at t = 0.35 s and the results are listed in table 2.

4.3. Oscillatory reactivity

In this case, the reactivity ρ(t) is a function of time given as ρ(t) = ξ sin(t) which differentiated
and inserted into the matrix A = I − hγf ′(y). The parameter ξ is a positive number that
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Table 2. Negative step insertion of reactivity of 0.007$ for a thermal reactor [23].

γ Inner α21 Outer Step Ramp Oscillatory Feedback
Iteration Iteration reactivity reactivity reactivity reactivity

0.201 0.008 4.5083 −2.124 45 × 1012 3.31 2.4214 × 1011

0.016 4.5087 −2.073 00 × 103 3.30 2.4211 × 1011

0.024 4.5087 1.000 235 3.30 2.4208 × 1011

0.032 4.5087 1.003 385 Exact 2.4206 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0.376 Exact Exact Exact 2.4199 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0.6 Exact Exact Exact 2.4198 × 1011

0.808 Exact 1.003 392 Exact 2.4201 × 1011

0.824 Exact Exact Exact 2.4199 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1.0 Exact Exact Exact 2.4198 × 1011

0.202 0.008 4.5083 −1.8328 × 1012 3.31 2.4214 × 1011

0.016 4.5087 −1.7677 × 103 3.30 2.4211 × 1011

0.024 4.5088 1.000 758 3.30 2.4208 × 1011

0.032 Exact 1.003 385 Exact 2.4206 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0.376 Exact Exact Exact 2.4199 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0.6 Exact Exact Exact 2.4198 × 1011

0.808 Exact 1.003 392 Exact 2.4201 × 1011

0.84 Exact Exact Exact 2.4199 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1.0 Exact Exact Exact 2.4198 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0.25 0.008 4.5083 −5.584 35 × 106 3.31 2.4213 × 1011

0.016 4.5087 1.002 304 3.30 2.4211 × 1011

0.024 4.5087 1.003 384 3.30 2.4208 × 1011

0.032 4.5088 1.003 386 Exact 2.4206 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0.376 Exact Exact Exact 2.4199 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0.6 Exact Exact Exact 2.4198 × 1011

0.808 Exact Exact Exact 2.4201 × 1011

0.84 Exact Exact Exact 2.4199 × 1011

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1.0 Exact Exact Exact 2.4198 × 1011

PWS – 4.5088 1.003 394 3.29 2.214 400 × 1011

Exact – 4.5088 1.003 394 3.29 2.420 364 × 1011
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Table 3. Compensated response to ramp function reactivity.

Time to the
a b Method First peak first peak Flux TC

0.1 1 × 10−11 PWS 2.395 7590 × 1011 0.224 70 1.006 6510 × 1010 3.02
GRK4-A 2.464 9574 × 1011 0.226 26 1.006 6499 × 1010 4.33
GRK4-T 2.465 2371 × 1011 0.226 26 1.006 6500 × 1010 4.33
GRK4-H 2.465 4628 × 1011 0.226 26 1.006 6501 × 1010 4.33

(at t = 2.0727)
1 × 10−13 PWS 2.866 6680 × 1013 0.235 80 1.006 6520 × 1012 2.96

GRK4-A 2.958 0990 × 1013 0.240 66 1.006 6480 × 1012 4.44
GRK4-T 2.958 0157 × 1013 0.240 66 1.006 6480 × 1012 4.44
GRK4-H 2.957 7276 × 1013 0.240 66 1.006 6482 × 1012 4.44

(at t = 2.0727)
0.01 1 × 10−11 PWS 2.006 4920 × 1010 1.106 10 1.026 3960 × 109 2.58

GRK4-A 2.023 2131 × 1010 1.107 36 1.024 6410 × 109 5.21
GRK4-T 2.023 2020 × 1010 1.107 36 1.024 6424 × 109 5.21
GRK4-H 2.023 2065 × 1010 1.107 36 1.024 6394 × 109 5.21

(at t = 2.0727)
1 × 10−13 PWS 2.483 1920 × 1012 1.155 20 9.670 5500 × 1010 2.74

GRK4-A 2.506 1997 × 1012 1.156 68 9.637 4374 × 1010 4.44
GRK4-T 2.506 1921 × 1012 1.156 68 9.637 4817 × 1010 4.44
GRK4-H 2.506 1852 × 1012 1.156 68 9.637 4301 × 1010 4.44

(at t = 2.0727)
0.001 1 × 10−11 PWS 1.274 0690 × 109 7.488 00 1.921 2660 × 108 9.06

GRK4-A 1.276 0915 × 109 7.487 28 1.920 7147 × 108 4.66
GRK4-T 1.276 1036 × 109 7.487 28 1.920 7122 × 108 4.39
GRK4-H 1.276 0943 × 109 7.487 28 1.920 6984 × 108 4.39

(at t = 9.0)
1 × 10−13 PWS 1.721 0060 × 1011 7.682 60 2.004 6470 × 1010 9.11

GRK4-A 1.724 5128 × 1011 7.682 04 2.004 0163 × 1010 4.61
GRK4-T 1.724 5159 × 1011 7.682 04 2.004 0077 × 1010 4.61
GRK4-H 1.724 5002 × 1011 7.682 04 2.003 9905 × 1010 4.61

(at t = 9.0)

TC = Total calculation time (s).

represented the magnitude of the variable part of the excess reactivity in dollars. It should be
assumed sufficiently small if compared to unity. The values of the parameters used in this
example are � = 1.0 × 10−4 s, β tot = 0.006 45, µ = 0.6$, β i = (0.000 21, 0.001 41, 0.001 27,
0.002 55, 0.000 74 and 0.000 27) and λi = (0.0124, 0.0305, 0.111, 0.301, 1.13 and 3.0) s−1.
The numerical results for this case are tabulated in table 2. A comparison is made at t = 2.26 s
with the previously obtained results from other analytical methods.

4.4. Compensated reactivity

In this example, the transient with feedback for six delayed groups is coupled. The following
case is chosen from the work conducted by Keepin and Cox [27]:

ρ(t) = 0.1t − 10−11
∫ t

0
N(t ′) dt ′. (70)

The delayed group parameters are β i = (0.000 21, 0.001 41, 0.001 27, 0.002 59, 0.000 74 and
0.000 27), λi = (0.0124, 0.0305, 0.111, 0.301, 1.13 and 3.0) s−1 and the generation time is
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� = 5.0 × 10−5 s. Then the new set of coefficients is applied to the point kinetics equations
with feedback reactivity; the solution over a time interval is considered and constructed by
making use of the solution at the end points of the time interval, so that the feedback reactivity
would be easily computed via an iterative process. Results for this case are shown and
compared in table 2. The developed new technique offers several values of the solutions at the
same time t with error not exceeding 10−4.

4.5. Comparisons of the numerical (GRK4-H) and the analytical (PWS) methods

The accuracy of the neutron flux is obtained with the adopted GRK4-H method and the power
series (PWS) [19, 20] method. The following examples represent the point kinetics equation
with different types of reactivity feedback.

Case I. In this example, the treatment of the GRK4-H method is established within the range
of stability interval using the inner and outer iterations. This case is also chosen from the work
of Keepin [27] as

ρ(t) = a(t) + b(t)

∫ t

0
N(t ′) dt ′, (71)

where a(t) represented the impressed reactivity variation (generally polynomial in t), and b(t)

is the ‘shutdown coefficient’ of the reactor system. It is usually taken as a negative constant of
magnitude ranging from 10−13 cm3 s−1 for slow system to 10−7 cm3 s−1 for fast metal systems.
The results of comparison for this case are shown in table 3.

Case II. In this case, prompt point reactor equations are solved for the ramp reactivity
insertion with a linear temperature feedback and described in the following table.

Mathematical treatments of the adiabatic model system without delayed neutrons.

System of equations GRK solution

dN(t)
dt

= ρ(t)N(t)
/
�

ρ(t) = at + b [T (t) − T (0)]
dT (t)

dt
= 1

C
N(t) = HN(t)

dθ
dt

= 1.0




y1 = N(t), y2 = T (t), y3 = t

f (y) =

α(t)N(t) + εN(t)T (t)

HN(t)

1




Rearrangement The Jacobian matrix takes the form

dN(t)
dt

= α(t)N(t) + εT (t)N(t),

α(t) = at
�

− bT (0)N(t)
�

, ε = b
�

f ′(y) =

α(t) + εT (t) εN(t) a

�
N(t)

H 0 0
0 0 0


 ,

where b is the temperature coefficient
of reactivity and a = ρ(0), the
initial conditions are given by
a = 10−2, b = −10−4 K−1,

T (0) = 300 K, N(0) = 105

H = 10−14 K s−1, � = 10−3 s

The matrix A = I − pf ′(y)

A =

1 − p(α(t) + εT (t)) −pεN(t)

−pa
�

N(t)

−pH 1 0
0 0 1


 ,

p = hγ

Using the system of equations (4) and substituting into
equation (2), the neutron density is obtained.

Comparisons are made between four such cases, GRK4-A, GRK4-H, PWS methods and the
exact values of the power density and the temperature at t = 0.41 s and t = 0.82 s. The results
are listed in table 4.
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Table 4. Results for a ramp reactivity insertion with a linear temperature feedback at t = 0.41 s.
and t = 0.82 s [28].

t = 0.41 t = 0.82

Method h N(t) T(t) TC(s) N(t) T(t) TC(s)

GRK4-A 1.64 × 10−6 6484.7650 205.3327 1.59 10.025 53 409.4142 2.63
GRK4-H 1.64 × 10−6 6484.752 205.3330 1.59 10.025 72 409.4140 2.63
P.W.Sa 0.001 6484.5290 205.3443 0.1 9.999 55 409.8737 0.21
EXACT . . . 6484.5723 205.3451 . . . 10.0 409.8754 . . .

a Here N(t), T(t) has been calculated with power series method.

5. Conclusions

A time-dependent reactivity inserted into a point reactor is coupled multiplicatively with the
neutron density to form a set of linear and/or nonlinear systems of equations with time-
dependent coefficients. In the present work, a new GRK method has been developed by
introducing two free parameters which could be used to optimize any desired feature in the
process. Inner and outer iterations are applied over a wide range of interval and the stability
of the resulted parameters is tested to generate a new set of coefficients which, in turn, are
applied to the point kinetics equations. The presented method has the ability to reproduce
all features of the transients in the solutions. In addition, it is applied to several types of
step, ramp input and periodical reactivity changes. The formalism is also well applicable to
nonlinear problems, where the reactivity depends on the neutron density through temperature
and thermal hydraulic reactivity feedback. For further validity and accuracy verification of
the developed method, comparisons are made with a number of other accurate analytical and
numerical methods.

The A(α) stability properties of the method are studied, which resulted in the development
of the GRK4-H method with the free parameter γ = 0.25 which corresponding to A(86.53◦)
stability gives more accurate results for the point kinetics equation. It is applied to two cases of
feedback problems and the results are comparable with those obtained by GRK4-A, PWS and
exact solutions. Finally, it can be concluded that the new developed methods for the solution
of the point kinetics equations are more elegant, more general and more powerful than other
conventional methods.
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